THE DIRECT APPROACH
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THE DIRECT APPROACH

Objective: Derive “finite element equations” from
physical understanding.
Will set up element egs. for:
(@) Truss problem (Rod or Spring element)
(b) Thermal problem (1-D heat conduction)
(c) Fluid problem (Flow in pipe)
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ELEMENT EQS FOR TRUSS PROBLEM

Consider 2-D truss problem,

<

Typical Finite element model
element consists of:

7 Elements
X 5 Nodes

Y@

X-Y is the global coordinates of the entire system

x-y s the local coordinates of element no. 3
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DERIVATION OF ELEMENT EQUATIONS

u;&U, = Nodal displacements

—U, —=u,
F&F, = Nodal forces
F—=a OD—=F,
1 A E 2 A = Cross-sectional area
——oX
< L = E = Modulus of elasticity
From Hooke’s Law: c = Esg
) F, u,-u
Sub. for stress and strain: A =E J—]lL

or ‘ATE (u,-u,) = &
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TRUSS ELEMENT

For equilibrium: >FE =0
F+F = 0
R="-kK
- AE
Or, A= T-uy)
The two equations are,
AE -
T(ul‘uz) =HR
AE -
- T(Ul‘uz) = F2
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TRUSS ELEMENT

which can be written in matrix form (truss element
equations) as,

e - el
or, in short, [K]{u} = {F}

where [K] = Element stiffness matrix

{u} = Vector of element nodal displacements
{F} = Vector of element nodal forces
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SPRING ELEMENT

Similary, the finite element equations for a spring
element can be derived,

Spring stiffness = k
e e T
}_% F“Z 11y TR

These FE egs. can be used to solve problems like,
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ELEMENT EQS FOR THERMAL PROBLEM

Consider 1-D steady-state heat conduction in
slab with different materials,
ANANANNNNAN

High temperature _\Mat. 1| Mat. 2 |Mat. 3/_ Low temperature

. L
gﬂﬁﬁ
Node typical element

Again, want to derive finite element equations.
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DERIVATION OF ELEMENT EQUATIONS

T(x)
/ T,&T, = Nodal temperatures
T,  Q&Q, = Nodal fluxes
Tl\ k, A _ .
e 0;/\/\ k = Thermal conductivity
1l o
b PR > © A = Conduction area
From Fourier’s Law: Q = -kA %“
T,-T KA
= kA2 1 - KA
Thus, QJ.L = kA = = T(T T)
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CONDUCTION ELEMENT EQS

Energy balance: Q, +Q, = 0

Q = -Q
> Q, = TET+T)
The two equations are,
T( ") =Q
() = Q
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CONDUCTION ELEMENT EQS

which can be written in matrix form as,

AN
L -11 TZ QZ
or, in short, [K]{T} = {Q}

where [K] = Element conduction matrix

{T} = Vector of element nodal temperatures

{Q} = Vector of element nodal heat fluxes
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ELEMENT EQS FOR FLUID PROBLEM

Consider fully developed, laminar, incompressi-
ble flow in a pipe network as shown:

@ @

Flowin —~e e & e e Flowout

Typical element

Again, want to derive finite element equations.
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DERIVATION OF ELEMENT EQUATIONS

P(X) Flow in circular pipe:

T 5 P,&P, = Nodal pressures
R ? Q, &Q, = Nodal flow rates
Ql—‘;@ @D 1"}92—Q2 w = Fluid viscosity
L_;XL D = Pipe diameter
4
Flow rate: Q= ‘;;gug—i
4 4
Thus, =20 RR_ wD
e T v T W )
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FLUID ELEMENT EQUATIONS
Conservation of mass:
Q+Q =0
Q = -9 .
_ mD
> Q = 128uL(‘P1+P2)
The two equations are,
4
nD
P-P) =
128“._(1 ,) = Q
4
D_(.R+P) = Q

128uL
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FLUID ELEMENT EQUATIONS

which can be written in matrix form as,

41 - P _ Q
M[-l ]J{Pz} ) {QZ}

or, in short, [K]{P} = {Q}

where [K] = Element fluidity matrix
{P} = Vector of element nodal pressures
{Q} = Vector of element nodal flow rates
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FINITE ELEMENT EQUATIONS

In conclusion, element equations obtained
from these 3 problems are in the same form, i.e.,

[K]{u} = {F)

where [K] Element stiffness matrix

{u}
{F

Vector of element nodal unknowns

Vector of element nodal loads




SYSTEM EQUATIONS >9

Example Set up system equations for the spring system,

Since there are 4 unknowns, thus there must be 4 egs.,
kg k2 kg kg |[w i
ka1 ka2 kag kaa|)u2 /)
k31 k3 k3z kaa||U3 3
ka1 ka2 kaz kaa]\Yg fa
_ (axd) @d)  (@a)
Or, in short, [K]sys {U}sys {F}sys
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SYSTEM STIFFNESS MATRIX
Basic idea: =
asic idea [Klsys e [K]e

Consider element (D connected between nodes 1 & 2:

et
[‘kl Kl (R 1 /\{D\/ 2

which can be written in form of system egs. (4 egs.) as,

Tk, -k, 0 0][w] [R)
"'kl kl 0 0 <u2>= <F2> (A)
0 0 0 oflu[ o
0 0 0 0lly, [0
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SYSTEM STIFFNESS MATRIX

Similary, for element @ connected between nodes 2 & 3:

[kz -szuz} - {Fz} _}—>Uz/\/‘<\z; j—‘>U3
which can be written in form of system egs. (4 egs.) as,
0 0 0 0]y 0]
0 0 0 0flu, 0]
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SYSTEM STIFFNESS MATRIX

And, for element @) connected between nodes 2 & 3:

%

u
Us

F

)=

which can be written in form of system egs. (4 egs.) as,

0 0
0 k
0 -k
0 0

0 0
= k3 0
ke 0

vy

0 0

‘}_(>u2 Kg l—>u3
o
o
R\ (©)
R
0
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SYSTEM STIFFNESS MATRIX

And, the last element @ connected between nodes 3 & 4:

SR

4 4 4 4

which can be written in form of system egs. (4 egs.) as,

0 0 0 0 ] ul\ 0]

O 0 O 0 u, 0 D)
< > o= < >

0 0 -ky kyJlu) R
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SYSTEM STIFFNESS MATRIX

Set of egs, (A), (B), (C), (D) can be combined
leading to the system stiffness matrix as,

[K]sys = Z[Kle

(1) (2) 3) (4)
LY. L]
_ TRk R Rtk T @)
T ke i kprkatk, -k, | O)
:: Cocke Tk @

where the numbers (1), (2), (3), (4) denote the
corresponding node numbers.
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SYSTEM STIFFNESS MATRIX

Note that, the system stiffness matrix can be obtained
easier by simply assigning the node numbers on the
element stiffness matrices (i.e. the numbers (1), (2), (3),
(4) below),

1) @) 2 O)_
K[ 8 W) M= 52 ¥

@ @) 3) ()
PO TP N i
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SYSTEM STIFFNESS MATRIX

and then combining them to yield the system stiffness
matrix by filling values from appropriate rows and
columns of the element stiffness matrices,

(1) (2) (3) 4)_
T . Y @
-k Lk rkyrkyt ckyky 1 [
Ky = |77 ok Tkyrkyrk, Lk, | ()
(4x4) I T - I B A
| Lotk Tk @)

Note that thls same technlque IS used in computer
programming.




CHARACTERISTICS OF SYSTEM
STIFFNESS MATRIX

@
© ‘W @

BW, 1—W—2 @ 3t+W—u4

HBW, JV\I
00
X = Nonzero term
(Klsys = | BW = Bandwidth
0 0 HBW = Half-bandwidth

e Symmetric, Kij = Kji

e Banded with HBW = 2
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SYSTEM STIFFNESS BANDWIDTH

If we renumber nodes as, @)
@ W @
1._/\/\/_04 ©) 30—/\/\/—02

IV\/
X 0 0 X
0 x x O

[Klys = 0 X X x Now HBW =4

X 0 x X

* Need more computer memory to store

e Require more computational time to solve

e Most production-type programs include bandwidth
optimization capability
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SYSTEM STIFFNESS BANDWIDTH

Half-bandwidth can be precomputed prior to FE
computation (for general problems) from,

HBW = (1+ NDIF)+NDOF

where NDIF is the maximum difference between the
node numbers for all elements, and NDOF is the
number of degrees of freedom per node.

Here, for firstexample: HBW = (1+1)=*1
second example: HBW = (1+3)=*1

1
AN
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FINITE ELEMENT EXAMPLE

Bars with different materials and cross-sectional
areas subjected to external forces.

Element O :

@ @ 3 Al = 20 sz
A b E =500 kN
0.5m 1.0 Element @) :
Hosm—ion— A= 10 cm?

E, =10x107 kN/m?
Want (a) Nodal displacements at nodes 2 & 3
(b) Element stresses
(c) Element forces
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FINITE ELEMENT EXAMPLE

The problem is 1-D problem which can be shown

R

}_‘>”1 }—‘>“2 }—‘>U3
where u,, U,, u;are the nodal displacements and i, i, i
are the forces that could represent the external or

reaction forces. Since the element stiffness matrix for
typical element is,

e = %[-11 J

as,
I:1 I:2
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FINITE ELEMENT EXAMPLE
Thus, the element matrices for element @) & @ are,
(1) 2) (2) 3
A@ AE AzEz K,
L, 1) L, 2)
Khiemen= ﬂ 5@1 [KLl@rm@n@ 2 2 Ay
L (2) L, L 3)
which could be comblned to yield the system egs.,
A, ii AR ii Uy R
L SO VR
_AlEJLT}i AR, Ak, ;i a2 uyp = R¢
__':;_JJ:__':;KE_L_z__J:_K':Ez__
R iRW s
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FINITE ELEMENT EXAMPLE

Substituting values for element (D:
7
AR . (002)x07) _ L5 m
L 0.5
and for element 2):

Ak, _ (001)(10X1°7) = 1x10° N/m
L, 1.0
leading to the system egs.,
2 -2 0]y, K
109-2 3 -1qu,p = 4F,
0 -1 1]j|u, F,
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FINITE ELEMENT EXAMPLE

Then, can apply boundary conditions,

Node Displacement Force
1 u; =0 F,=7?
2 u,=? F, = 300
3 Ug= ? F, = 500

so that the system eqs. become,

2 -2 0]fo R
10°-2 3 -1|du,t = 4300
0 -1 1]y, 500

Solvetoget, u,=0004 m and u;= 0.009 m
and the reaction F, = -800 N




75
FINITE ELEMENT EXAMPLE

Element stresses can then be computed,

_ e U=y _ 71(0.004-0
Gelemend= E181 = By 2._ 1 = (5X10 )T

= 400,000 N/m?

Us~Y2 _ fox10” (0.009-.004)
L (1 ) 1.0
= 500,000 N/m?

Gelement2 = E282 = B

and also the element forces,
Forcegyement = C1A = (400,,000)(002) = 800 N
Forcegement = G2 Ay = (500,,000)(001) = 500 N
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TRANSFORMATION OF FE MATRICES

Type of Transformation
Problem Unknown Unknown Required ?

Structural Displacements  Vector Yes
Thermal  Temperature Scalar No
Fluid Pressure Scalar No

Velocities Vector Yes
Magnetic  Voltage Scalar No

Etc.




TRANSFORMATION OF FE MATRICES "

Consider a 2-D truss problem,

X-Y = Global coordinates

e There are 7 elements
and 5 nodes

 Each node has 2 displacement unknowns, u; & v;,
e.g., U; & v, at node 3.

e Thus there are 10 unknowns (or 10 eqs) before BC’S
e Total number of equations (NEQ) computed from,

NEQ = NUMNP* NDOF
where NUMNP is total nodes and NDOF is degrees of freedom.

FE MATRIX TRANSFORMATION 8

Consider a typical element

Y _ X
now ot Xy

Element local coordinates

> Ty w&u, = Nodal disp in x-direction
% X-Y = Global coordinates
15, % &V; = Nodal disp components of
X node 1 in global coord.
From figure, U = T,C0s0 + V;sind
U = ﬁz c0sO + 72 sind ﬁl

Or, in matrix form, {"*:1}

[cose sind 0 OJV11
2

0 0 «cosH sing]|u,

Vy
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FE MATRIX TRANSFORMATION

!

Up| _ [cosO sind O 0 1%
Uy 0 0 «coso sing]|u,
\/
Or,inshort,  {u} = [R]{u} 2
(2x1 (2x4) (4x1)

where {u} = Vector of nodal displacements in local
(2x1)  x-coordinate

{u} = Vector of nodal displacement components
(4x1) in global X-Y coordinates

[Rl = Transformation (or Rotation) matrix
(2x4
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FE MATRIX TRANSFORMATION
Element stiffness matrix in local Uy x
x-coordinate has dimension of 2x2: N

N

1

Thus the matrix in global X-Y coordinates
must have dimension of 4x4:

Y v
[K]{a} =! (4x4) ];1 i :
(4x4) ‘2 1

vz

How to derive the element stiffness matrix [7% ?
(4x4




FE MATRIX TRANSFORMATION %

Strain energy for truss (spring) element:

L.
|

strain

u;
energy

%

K 2
Y¢u

1 -

Strainenergy Uy = 2k62 = Area under curve

§k(ul -u,) = 5 (u1 2u1u2+u%)

] %Lu%lle;ﬂﬁ ‘ir] {zu;}

(2x2) x1
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ELEMENT STIFFNESS MATRIX

onu=gmlzzﬁﬁ= )T K] o

axz) (2x2) (241)
Stiffiness maitrix

in local coord.
But, from the relation, uw = [R] @
(24) (2x4) (4)
sub, U = 2RI KIRIG)

v = 2RI K] [R] o =1@'[K @
2 (1xd)ax2) (2%2) (2x4) (ax1) 2 (axd) (ax4) (4x)

\==_¢==d
Stiftness matrix
in global coord.

Thus, element stiffness matrix in global X-Y coordinates is,
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ELEMENT STIFFNESS MATRIX

[K]= [R]TK][R] =

cos0 0
(ax4) (4x2) (2x2) (2x4)

sind 0 [k -k][cosesine 0 o]
0 co%0 |k kIL O 0O cos6 sind
0 sind

00520 sindcos®  -c0s%0  -sinBcosh |
- sin%0  -sinBcosd  -sine
[K] = k 2 .
c03° 0 3in6coso
| Sym sin%e |
v L
The angle 6 is measured from
y global X-axis (Positive in
| 0 @

counterclockwise direction).
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TWO-DIMENSIONAL TRUSS EXAMPLE

Element  Area Modulus
Number A(cmz) E(N/cmz)

1 5.0 10x10°
2 6.0 30x10°
X 6
3 4.0 30x10

Compute nodal displacements and element stresses.
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TWO-DIMENSIONAL TRUSS EXAMPLE

First, need to compute FK]
for all elements,

@) W) (@ %) )
0

c0s20 sinBosd - -sinBcoso | (T;)
K] = AE sin9  -sinfcosd  -sin?0 (V)
@a L c0s?0  sinBcosd |(U;)
| Sym sin0 (V)
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TWO-DIMENSIONAL TRUSS EXAMPLE

Element AE/L 1

. 6)hox0?)

:
2

o 3 2 -90° O 1

6 o
» 6 3%10 2 1 0 1 0
3 4 30X106 1 3 135 ‘L L
10042 2 2
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TWO-DIMENSIONAL TRUSS EXAMPLE

The element stiffness matrices are,

(U3)(3)(@)(77)

[0 0 0 0@
e _ (5)(10x108)|0 1 0 -1|(vy)
R]E'm“@-TO 0 0 0 (ETZ)
0 -1 0 1](vp)

(@) )@
[1 0 -1 o)
- _(©)Ex0%[0 0 0 0(vy)
Khenen@ =100 |1 0 1 o (ﬁi)
(0 0 0 0J(w)
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TWO-DIMENSIONAL TRUSS EXAMPLE

(@) () (@) @)

1 1 1 17
2 2 2 2|®
A1 1 1 W)
K] - @Ex%) 2 2 2 2|
element @) 10042 -l l l -l(ﬁ)
2 2 2 2|3

1 1 1 1
2 2 2 2=(V3)

Assemble these 3 element matrices leading to system
stiffness matrix.




TWO-DIMENSIONAL TRUSS EXAMPLE

The system stiffness matrix is,

K]y =10°
(6x6)

89

@) () @)) (ﬁa) (V3)
18+3v2 -3V2 11,% e e @)
%2 132 N 3~F ~3V2 |(W)
oW e
B
REEETR R ()
32 -32]  1-5-3V25+342](%)

TWO-DIMENSIONAL TRUSS EXAMPLE

Then apply boundary conditions,
Displacement

Node

1

2

3

Thus, the system eqgs. beco

| S & S <l .5“

Vq

[Khys-

ooSlo,s I\'Igl\

me

O O NN O NN

Force

g rapam *.n

iy
2

§T' o

s

]
@@osyg

90
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TWO-DIMENSIONAL TRUSS EXAMPLE

which yield the results of nodal displacements,

U = -111111x10° cm
V, = -7.00367x10° cm
v, = 0 cm 2500 N
and reaction forces, 2500 N=-
F@@ = 2000 N
E = -2500 N 2500 N
Uy
Fﬁ@ = 2500 N 2000N -~@——————®—=500 N
2 1

that can be checked for equilibrium.
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TWO-DIMENSIONAL TRUSS EXAMPLE

Element stresses are computed from,

A% %
c = Es E T i=3
As an example, the stress in e
element 3):: \ o

i=1

(ug-yy) 100+/2 U1
Celementd = (30X106)(:1_00ﬁ) \/»

Here, u, and u, are nodal displacements in the element
local coordinate which can be determined from the
relation {u} = [R] {u}

(2x1) (2x4) (4x1)
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TWO-DIMENSIONAL TRUSS EXAMPLE
ie., U
{Ul}{cose sing 0 0 ] A
Uy 0 0 cosH sind Ug
V3

A1 5 o |[1111000°%
- V2 2 -7.1111x10° ={- 4.16667»(10‘3}
o o -1 1L 0 0
N2 A2 0

Thus, the stress in element(3)is

U ‘U _3
Gelement @ — (30)(106)(1@3%“’/%) = (30)(106) 0"‘4-.:.666;)(10

= 884 N/cm?
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TWO-DIMENSIONAL TRUSS PROBLEMS

The same procedure described in this example can
be applied to solve other problems with more complex
configuration:

2 kN
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CONCLUSION OF DIRECT APPROACH

Advantages:
e Element equations are easy to derive and
understand
e Applicable to other 1-D problems (e.g., heat
transfer, flow in pipe, etc.)

Limitation:
e Can not extend to 2 & 3 dimensional continuum
problems

e Need other approaches to derive FE equations




